skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Ninghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 22, 2026
  2. Free, publicly-accessible full text available March 21, 2026
  3. Free, publicly-accessible full text available February 24, 2026
  4. Free, publicly-accessible full text available April 24, 2026
  5. Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual explanations primarily concentrate on the local-level perspective (i.e., generating counterfactuals for each individual graph), which suffers from information overload and lacks insights into the broader cross-graph relationships. To address such issues, we propose GlobalGCE, a novel global-level graph counterfactual explanation method. GlobalGCE aims to identify a collection of subgraph mapping rules as counterfactual explanations for the target GNN. According to these rules, substituting certain significant subgraphs with their counterfactual subgraphs will change the GNN prediction to the desired class for most graphs (i.e., maximum coverage). Methodologically, we design a significant subgraph generator and a counterfactual subgraph autoencoder in our GlobalGCE, where the subgraphs and the rules can be effectively generated. Extensive experiments demonstrate the superiority of our GlobalGCE compared to existing baselines. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. Free, publicly-accessible full text available April 25, 2026
  7. Free, publicly-accessible full text available January 22, 2026
  8. Recommending products to users with intuitive explanations helps improve the system in transparency, persuasiveness, and satisfaction. Existing interpretation techniques include post-hoc methods and interpretable modeling. The former category could quantitatively analyze input contribution to model prediction but has limited interpretation faithfulness, while the latter could explain model internal mechanisms but may not directly attribute model predictions to input features. In this study, we propose a novelDualInterpretableRecommendation model called DIRECT, which integrates ideas of the two interpretation categories to inherit their advantages and avoid limitations. Specifically, DIRECT makes use of item descriptions as explainable evidence for recommendation. First, similar to the post-hoc interpretation, DIRECT could attribute the prediction of a user preference score to textual words of the item descriptions. The attribution of each word is related to its sentiment polarity and word importance, where a word is important if it corresponds to an item aspect that the user is interested in. Second, to improve the interpretability of embedding space, we propose to extract high-level concepts from embeddings, where each concept corresponds to an item aspect. To learn discriminative concepts, we employ a concept-bottleneck layer, and maximize the coding rate reduction on word-aspect embeddings by leveraging a word-word affinity graph extracted from a pre-trained language model. In this way, DIRECT simultaneously achieves faithful attribution and usable interpretation of embedding space. We also show that DIRECT achieves linear inference time complexity regarding the length of item reviews. We conduct experiments including ablation studies on five real-world datasets. Quantitative analysis, visualizations, and case studies verify the interpretability of DIRECT. Our code is available at:https://github.com/JacksonWuxs/DIRECT. 
    more » « less
  9. Interpreting deep neural networks through examining neurons offers distinct advantages when it comes to exploring the inner workings of Deep Neural Networks. Previous research has indicated that specific neurons within deep vision networks possess semantic meaning and play pivotal roles in model performance. Nonetheless, the current methods for generating neuron semantics heavily rely on human intervention, which hampers their scalability and applicability. To address this limitation, this paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models, without requiring human intervention or prior knowledge. Experiments are conducted with both qualitative and quantitative analysis to verify the effectiveness of our proposed approach. 
    more » « less